

Att Mr George Naguib m/s Feltex Carpets Pty Ltd, 8 Scotland St, Braybrook Vic 3019

Mass/unit area **20** oz/yd² / g/m²

TEST REPORT No. 103954

LABORATORY REF: P103954

CUSTOMER REFERENCE

PROCESSOR 11

Sample description as provided by customer

y customer Order No. FTX1052 Pile Fibre Content 100% Nylon ,90% Solution Dyed Nylon 10% Space

Dyed Nylon Construction Details Tufted Secondary Backing Jute Style LOOP PILE

Colour **Blue** Pile Height **/** mm

TEST METHOD AS/ISO 9239.1 2003 Reaction To Fire Tests For Floorings Part 1 Determination of the Burning Behaviour Using a Radiant Heat Source. As required by specification C1.10a of the Building Code of Australia.

Tested in accordance with the Carpet Institute Code of Practice for AS/ISO 9239 Testing Version 10 / 0805.

The test values relate to the behaviour of the test specimens of a product under the particular conditions of the test, they are not intended to be the sole criterion for assessing the potential fire hazard of the product in use. Clause 9 of AS/ISO 9239 Part 1.

Conditioning as specified in BS EN 13238.2001

Sample submitted Date **28/2/2010**

Test Date 23/3/2010

ASSEMBLY SYSTEM: DOUBLE BOND (DOUBLE STICK) (Details Below).

The underlay used was **BRIDGESTONE RESIST** it was adhered to the substrate using **ROBERTS** 656 adhesive. The floor covering was adhered to the underlay using **ROBERTS** 95 adhesive.

Substrate : Non-combustible

Substrate - 6mm Fibre Reinforced Cement Board to simulate a Non-Combustible Flooring.

Sample Cleaned as Specified in ISO 11379.1997. The Holding Torque on Specimen Frame was 2Nm.

Initial Test	Specimen 1 Length Direction Specimen 1 Width Direction	Critical Radiant Flux 2.1 kW/m ² Critical Radiant Flux 2.2 kW/m ²	
	Full tests carried out in the	Length Direction	

SPECIMEN	Length #1	Length #2	Length #3	Mean
Critical Radiant Flux (kW/m ²)	2.1	2.2	2.2	2.2
Smoke Development Rate (%.min)	406	294	334	345

The values quoted below are as required by Specification C1.10a Fire Hazard Properties (Floors) of the Building Code of Australia. The Critical Radiant Flux quoted is the value at Flame-Out/Extinguishment (BCA General Provisions A1.1).

MEAN CRITICAL RADIANT FLUX 2.2 kW/m^2

MEAN SMOKE DEVELOPMENT RATE 345 %.min

OBSERVATIONS The samples shrunk away from the heat source ,ignited then burnt

M. B. Webb Technical Manager

DATE: 23/3/2010

Measurement Science & **X** Technology No. 15393 **This document is issued in accordance with**

NATA's accreditation requirements.

APL Australia Pty Ltd 5 Carinish Rd, Oakleigh South Victoria 3167 Australia Telephone: 03 9543 1618 Facsimile: 03 9562 1818 Mobile: 0411 039 088

PAGE 1 of 2

This Page (1) has been designed to show the values required under Specification C1.10a Fire Hazard Properties (Floors) of the Building Code of Australia.

The values on Page 2 have no relevance to the Code.

1004 04 09

Email: apl@aplaustralia.com.au Web: www.aplaustralia.com.au ABN 69 468 849 319

TEST REPORT No. 103954THE INFORMATION PROVIDED ON THIS PAGE OF THE TEST REPORT IS FOR THE SPONSORS USE ONLY AND WILL MEET THE
REQUIREMENTS OF THE STANDARD. IT IS NOT REQUIRED UNDER CLAUSE C1.10A OF THE BUILDING CODE OF AUSTRALIAPAGE 2 of 2

TIME FOR EACH SPECIMEN TO REACH EACH MARKER IN SECONDS

Specimen	50	60	110	160	210	260	310	360	410	460	510	560	610	660	710	760	810	860
1	163	165	245	255	280	298	361	377	471	625	753	1225	1809	1				
2	172	175	193	251	283	329	356	421	492	623	876	1183	1591	/				
3	216	218	241	269	286	301	325	379	446	557	730	849	1351	/				

1

TESTS	SMOKE PRODUCTION		BURNING CHARA	CTERISTICS		
Specimen	Maximum Light Attenuation (%)	Smoke Development Rate (%.min)	Burn Length (mm) at Flame Out/ Extinguishment	Time To Burn Out (s)	Critical Heat Flux at 30min (kW/m²)*	
Initial Test: Width	70	248	635	1,578	(n/a)*	
Specimen Tests: Length						TECHNICAL COMPETENCE M. B. Webb Technical Manager
1	74	406	645	1,989	2.4*	DATE: 23/3/2010
2	67	294	638	1,904	2.2*	Measurement Science
3	75	334	634	1,516	(n/a)*	& Technology No. 15393 This document is issued in
Mean	72	345	639	1,803	2.3*	accordance with NATA's accreditation requirements.

The laboratory does not allow the use of this page of the report without the use of page 1.

This page alone has no validity under specification C1.10a Fire Hazard Properties (Floors) of the Building Code of Australia.

* Critical Heat Flux at 30min has no relevance under the Building Code of Australia which demands Heat Flux measurement at Flame Out/Extinguishment (BCA General Provisions A1.1). 2004 04 09 19924 23 March 2010

APL Australia Pty Ltd 5 Carinish Rd, Oakleigh South Victoria 3167 Australia Telephone: 03 9543 1618 Facsimile: 03 9562 1818 Mobile: 0411 039 088 Email: apl@aplaustralia.com.au Web: www.aplaustralia.com.au ABN 69 468 849 319